Реализация межпредметных связей отдельных разделов алгебры и начал математического анализа

Педагогическая теория » Реализация межпредметных связей на элективных курсах по началам математического анализа в классах гуманитарного профиля » Реализация межпредметных связей отдельных разделов алгебры и начал математического анализа

Страница 3

Из этой таблицы следует, что на клеточку номер n нужно положить зерен, например, на клеточку номер 11 нужно положить зерен, а на клеточку номер 21 - зерен и т. д. Для того, чтобы подсчитать величину награды, мы должны сложить зерна, лежащие на всех клеточках шахматной доски:

Заметим, что есть 64 числа , которые образуют геометрическую прогрессию, первый член которой равен 1 , последний - и знаменатель q = 2. Сумма членов такой последовательности вычисляется по формуле:

Применим к нашему случаю и получим:

Читается это гигантское число так: восемнадцать квинтиллионов четыреста сорок шесть квадриллионов семьсот сорок четыре триллиона семьдесят три миллиарда семьсот девять миллионов пятьсот пятьдесят одна тысяча шестьсот пятнадцать. Такую награду должен дать царь Шерам изобретателю шахмат Сете. Представим себе тот объем, который занимает такое количество зерна. Известно, что 15000000 зерен пшеницы вмещается в 1 кубический метр. Разделив S на 15000000, мы получим, что награда должна занять 12 000000000000 м3 - двенадцать триллионов кубических метров. Для того, чтобы поместить такое количество зерна, достаточно, например, построить амбар, в основании которого лежит прямоугольник со сторонами 8 м и 10 м, а высота равна 150000000000 м = 15000000 км, что совпадает с расстоянием от Земли до Солнца! Совершенно ясно, что такого количества зерен нет ни у какого царя и выполнить просьбу Сете невозможно!

После того, как была рассказана эта легенда, можно переходить непосредственно к самой показательной функции.

Вернемся к количеству зерен, который нужно положить в клетку номер n шахматной доски. Обозначим это число через .Тогда

Таким образом, мы определили на множестве натуральных чисел функцию f , значения которой находятся по формуле: .

Заметим, что если некоторая величина на каждом шагу увеличивается вдвое, то она очень быстро возрастает. Такой рост характерен и для живых существ, если у них нет естественных врагов и достаточно ресурсов(пищи, воды, территории и т. д.). Например, когда однажды в Австралии оказалось на воле пара кроликов, то они размножались настолько быстро, что превратились в угрозу всему сельскому хозяйству страны.

Такие несложные примеры из различных областей знаний, которых можно привести множество, помогают учащимся осознать естественную необходимость существования и изучения понятия показательной функции.

Что касается второго способа, то есть показа применения изучаемого понятия в области предмета, являющегося профильным, то возможен такой вариант. После того, как будет введено число е, на занятии элективного курса нужно установить связь числа е с формулой сложных процентов.

Страницы: 1 2 3 4 5 6 7 8


Другое о педагогике:

Типология учебных игр
Анализ учебно-методической литературы по вопросам игрового обучения английскому языку показал, что игры группируются по цели использования (лексика, грамматика, перевод, страноведение), по функциональной значимости (речевые навыки и умения), по сюжетной линии (инструментальные игры, ролевые игры, д ...

Коррекционная программа педагогической помощи детям группы риска
Так как исследование проводилось в октябре месяце 2002 года, то организуя с детьми группы риска серию коррекционных занятий, можно несколько улучшить их результаты. Задания должны быть направлены на развитие внимания, памяти, мышления, воображения, речи, тонкой моторики и координации движений рук, ...

Теоретические аспекты изучения детской одаренности
1. Определение понятий «одаренность» и «одаренный ребенок» Одаренность - это системное, развивающееся в течение жизни качество психики, которое определяет возможность достижения человеком более высоких (необычных, незаурядных) результатов в одном или нескольких видах деятельности по сравнению с дру ...

Меню

Copyright © 2026 - All Rights Reserved - www.normaleducation.ru